

激光诱导多层光学薄膜损伤分析与仿真

郑梦珂^{1,2},李杰²,张蓉竹^{1**},柴立群^{2*}

¹四川大学电子信息学院,四川 成都 610064; ²中国工程物理研究院激光聚变研究中心,四川 绵阳 621900

摘要 提出一种全面分析光学薄膜损伤特性的方法,根据热传导理论与电子增殖理论建立激光辐照下多层介质膜的损伤理论模型。以 HfO₂/SiO₂多层高反膜为例,计算红外纳秒脉冲激光作用下膜系内部的温度场、应力场以及自由电子数密度分布,对其热学特性与电子增殖特性进行综合评估后,得到不同输入条件下膜系的损伤阈值。结果表明,薄膜材料的损伤特性会受到驻波场的影响,在 1064 nm 波长的激光辐照下 HfO₂/SiO₂多层介质薄膜的热致应力损伤效应先于热熔融效应先于场效应发生,且薄膜中 SiO₂ 层发生热损伤,而薄膜并未发生场损伤,此外薄膜的损伤阈值随着激光脉宽的增大而增大。

关键词 薄膜; 多层光学薄膜; 热传导; 光子电离; 脉冲激光 中图分类号 TN249; O432 **文献标志码** A

doi: 10.3788/AOS202242.0131001

Analysis and Simulation on Damage Characteristics of Multilayer Optical Film by Pulsed Laser

Zheng Mengke^{1,2}, Li Jie², Zhang Rongzhu^{1**}, Chai Liqun^{2*}

¹ College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610064, China; ² Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China

Abstract A method for comprehensively analyzing the damage characteristics of optical films is proposed. According to the theory of heat conduction and electron proliferationand, a theoretical model for damage of multilayer dielectric films under laser irradiation is established. Taking HfO_2/SiO_2 multilayer high reflection film as an example, the temperature field, stress field, and free electron number density distribution in the film system under the action of infrared nanosecond pulse laser are calculated, and the damage threshold of the film system under different input conditions is obtained after comprehensive evaluation of its thermal characteristics and electron proliferation characteristics. The results show that the damage characteristics of HfO_2/SiO_2 multilayer dielectric films are affected by the standing wave field. The thermal stress damage effect of HfO_2/SiO_2 multilayer dielectric films is earlier than the thermal melting effect, and the SiO_2 layer in the film is thermal damage, but the film has no field damage. In addition, the damage threshold of the film increases with the increase of laser pulse width. **Key words** thin films; multilayer optical film; thermal transfer; photon ionization; pulse laser

1引言

光学薄膜是激光系统中最容易损伤的薄弱环 节,为此其抗损伤性能一直是高功率激光领域所关 注的问题之一。当具体研究薄膜与激光相互作用的 过程时,需要对多方面的作用机理进行研究。 Apfel^[1]研究了多层薄膜的电场强度递推式和膜内 的光场分布,发现膜系结构中电场峰值强度处的薄 膜材料易发生损伤。Nagy等^[2]研究了不同重复频 率的激光辐照下,TiO₂/SiO₂ 高反膜损伤阈值的变

收稿日期: 2021-05-28; 修回日期: 2021-06-30; 录用日期: 2021-08-03

基金项目: 激光聚变研究中心青年人才基金(RCFCEI-2018-7)

通信作者: *chailiqun@163.com; **zhang_rz@scu.edu.cn

化幅度,结果表明千赫兹频率的激光辐照下膜系的 损伤阈值大于兆赫兹频率的激光。Csajbók 等^[3]研 究了飞秒激光作用下脉冲次数对多层高反膜损伤阈 值的影响,结果表明高反膜的损伤阈值随着辐照次 数的增加而减小。另外,吴周令等^[4]根据驻波场理 论模拟计算了多层介质薄膜的温度场,得到了薄膜 的损伤阈值与材料的结构特性和激光的重复频率等 参数密切相关的结论。Du 等^[5]分析了超短脉冲激 光作用下,ZnS/SiO₂ 多层介质薄膜的自由电子数密 度变化和光场再分布特性,结果表明自由电子数密 度突破膜材料的临界阈值是导致薄膜损伤的直接原 因。上述研究重点是基于单一理论模型对光学薄膜 的损伤特性进行分析,而综合热效应和场效应来研 究激光诱导损伤的报道尚不多见。

本文提出一种综合考虑激光作用下材料内部热效应与场效应的研究思路,以 HfO₂/SiO₂ 多层膜为具体研究对象,对其内部温度场、应力场以及电子增殖过程进行模拟计算,通过对损伤机理的分析和不同损伤特性的比较确定膜系的损伤特性。

2 理论模型

图 1 为激光辐照多层膜的分析模型,本文假设 半径为 b 的多层薄膜被光束半径为 r₀ 的高斯光束 辐照,其中 z_i 为第 i 层材料的厚度。本文以波长为 1064 nm 的高反膜为例,膜系结构为 substrate/ (0.93H0.20L)(0.25H0.49L)(0.45H0.63L) (0.41H0.37L)(0.41H0.62L)(0.51H0.69L) (0.60H0.64L)(0.55H0.57L)(0.73H0.72L) (1.00H1.23L)¹⁴(1.00H0.60IL)/air,其中系数表示 对每个膜层物理厚度的量化,H表示光学厚度为 1/4 波长的高折射率材料(HfO₂)层,L表示光学厚度为 1/4 波长的低折射率材料(SiO₂)层。

Fig. 1 Analysis model of multilayer film irradiated by laser

当使用脉冲激光辐照多层介质薄膜时,薄膜材

第 42 卷 第 1 期/2022 年 1 月/光学学报

料所吸收的激光能量将转化为热量并向周围传递。 薄膜的温度分布可以由傅里叶热传导方程计算^[6], 表达式为

$$c_i \rho_i \left(\frac{\partial}{\partial t}\right) T(r, z, t) - \kappa_i \nabla^2(r, z, t) = q_i(r, z, t),$$
(1)

式中:r表示薄膜半径;t表示激光作用时间; T(r,z,t)表示薄膜的瞬态温度; c_i 、 ρ_i 和 κ_i 分别表 示第i层材料的比热容、密度和热导率; $\nabla(r,z,t)$ 表示拉普拉斯算子,温度对空间坐标的导数; $q_i(r, z,t)$ 表示体热源项,与薄膜和基底内部的电场分布 有关^[6],可表示为

 $q_i(r,z,t) = I_0 \alpha_i |E_i(z)|^2 n_i f(r) g(t)$, (2) 其中

$$f(r) = \exp\left(-\frac{2r^2}{r_0^2}\right),\qquad(3)$$

$$g(t) = \begin{cases} 1, & 0 < t \leq \tau \\ 0, & t > \tau \end{cases}, \tag{4}$$

式中: α_i 表示第i 层材料的吸收系数; n_i 表示第i 层 材料的折射率; I_0 为入射激光的峰值功率密度; τ 表 示激光脉宽; $E_i(z)$ 表示薄膜内部归一化电场强度。

边界条件和初始条件分别为

$$\begin{cases} \frac{\partial}{\partial t} T(r, z = 0, t) = \gamma T(r, z = 0, t) \\ T(r, z = Z, t) = T(r = b, z, t) = 0, \\ T(r, z, t) \Big|_{t=0} = 0 \end{cases}$$
(5)

式中: γ 表示膜层表面与空气进行热交换的表面热流系数,一般取为 10^5 cm^{-1[7]};Z 表示多层薄膜的总厚度。

薄膜内不均匀的温度分布会使膜材料发生形变,进而导致膜材料内热应力的产生。在求解热应力的过程中,当假设所有的热应力都满足自由边界条件时,可求得薄膜的热应力分布^[8],表达式为

$$\sigma_r(r,z,t) = \frac{\gamma' E}{1-v} \left[\frac{1}{b^2} \int_0^b T(r,z,t) r dr - \frac{1}{r^2} \int_0^r T(r,z,t) r dr \right],$$
(6)

$$\sigma_{z}(r,z,t) = \frac{\gamma' E}{1-v} \left[\frac{2}{b^2} \int_{0}^{b} T(r,z,t) r dr - T(r,z,t) \right], \quad (7)$$

$$\sigma_{\theta}(r,z,t) = \frac{\gamma' E}{1-v} \left[\frac{1}{b^2} \int_0^b T(r,z,t) r dr + \frac{1}{r^2} \int_0^r T(r,z,t) r dr - T(r,z,t) \right], \quad (8)$$

式中: σ_r , σ_z , σ_θ 分别表示径向、Z 轴方向和环向的热应力分布;E、v和 γ' 分别表示薄膜材料的杨氏模

量、泊松比和热弹性系数。

2.2 多层介质膜中的电子增殖理论

对于多层介质薄膜而言,激光在薄膜中会形成 多重驻波,根据文献[5]可计算出膜内的驻波场分 布。光学薄膜对激光能量有吸收作用,这会造成薄 膜材料的光子电离,致使材料内积累大量的自由电 子。自由电子数密度的累积方程^[9]可表示为

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \left[R_{\mathrm{p},i} + R_{\mathrm{a},i}N(t)\right] \left[1 - \frac{N(t)}{N_0}\right], \quad (9)$$

式中:N(t)表示膜材料价带的自由电子数密度;N₀ 表示初始的自由电子数密度;R_{a,i}和R_{p,i}分别表示 第*i*层材料的雪崩电离速率和多光子电离速 率^[10-11],表达式分别为

$$R_{a,i} = \frac{v_{s}eI}{E_{g}} \exp\left[-\frac{E_{I}}{I(1+I/E_{P})+E_{KT}}\right], (10)$$

$$R_{p,i} = \frac{2\omega}{9\pi} \left(\frac{\omega m}{\hbar \sqrt{\gamma_{1}}}\right)^{3/2} Q(\gamma_{K}, x) \times \exp\left[-\pi \langle x+1 \rangle \frac{K_{1}(\gamma_{1})-K_{2}(\gamma_{1})}{K_{2}(\gamma_{2})}\right], (11)$$

式中: v_s 表示饱和漂移速率;e表示电子电荷; E_g 表示材料的禁带宽度; E_1 、 E_p 和 E_{KT} 分别表示电子克服电离散射、声子散射和热散射效应所需的电场强度;I为入射光场强度; ω 表示辐照激光频率;m表示电子的有效质量; \hbar 表示约化普朗克常量; $\langle \cdot \rangle$ 表示取整符号; γ_K 表示材料的Keldysh参数, $\gamma_K = \frac{\omega\sqrt{mE_g}}{eI}$; $\gamma_1 = \frac{\gamma_K^2}{1+\gamma_K^2}$; $\gamma_2 = \frac{1}{1+\gamma_K^2}$; $K_1(\gamma)$ 表示第一类椭圆积分; $K_2(\gamma)$ 表示第二类椭圆积分; $x = \frac{2}{\pi \frac{E_g}{\hbar \omega}}$

 $\frac{K_{2}(\gamma_{2})}{\sqrt{\gamma_{1}}};Q(\gamma_{K},x)$ 表示道森积分,表达式为 $Q(\gamma_{K},x) =$ $\sqrt{\frac{\pi}{2K_{1}(\gamma_{2})}} \sum_{k=1}^{\infty} \exp\left\{-n\pi \frac{K_{1}(\gamma_{2}) - K_{2}(\gamma_{2})}{K_{2}(\gamma_{1})}\right\} \times$

$$\Phi\left\{\frac{\pi}{2}\sqrt{\frac{2\langle x+1\rangle-2x+n}{K_1(\gamma_2)K_2(\gamma_2)}}\right\}.$$
(12)

在脉冲激光的辐照下,薄膜对激光能量的吸收 作用不仅会导致膜系内部温度发生变化,进而出现 热应力的现象,还会因光子电离的发生而导致自由 电子的累积。由(2)式、(10)式和(11)式可知,薄膜 体热源项和光子电离速率的变化都会受到膜内光场 强度的影响。因此,在计算膜内光场强度分布的基 础上,利用(1)~(8)式可以计算得到脉冲作用下膜 内的温度场和热致应力场分布,利用(9)~(11)式可 以计算得到膜材料内的自由电子数密度,从而可对 薄膜的热损伤特性和场损伤特性进行分析比较。

3 分析与讨论

基于第2节的理论模型研究分析了在高斯脉冲 激光的辐照下,HfO₂/SiO₂高反膜的温度、热应力 和自由电子数密度分布。1064 nm 波长的高斯脉冲 在薄膜表面沿 Z 方向垂直入射,光束半径 r。为 0.5 nm,薄膜半径 b 为1 nm。在光强呈高斯分布 的激光辐照下,光斑中心的温升最高,因此本文主要 分析膜层材料表面和中心轴(r=0)上的温度和热应 力。表1给出了薄膜材料的热力学参数^[6,12],表2 给出了薄膜材料的具体参数^[5,13-14]。

表1 薄膜材料的热力学参数

		Absorption				Vour	Thern	nal
Maria	Refractive	Absorption	ρc /	K /	Melting	Tour	coefficie	nt of Poisson's
Material	index		$(J \cdot cm^{-3} \cdot C^{-1})$	$(10^{-3} \mathrm{W} \cdot \mathrm{cm}^{-1} \cdot \mathrm{°C})$	⁻¹) point /°C	(10 ¹⁰	expansio	on / ratio
		cm -				(10**	Pa) $(10^{-6} \ \%)$	$2^{-1})$
HfO_2	1.812	3.54	4.64	20.0	2850	24.	0 6.6	0.29
SiO_2	1.431	1.41	2.10	1.7	1723	8.	7 0.5	0.16
Table 2Physical parameters of thin film materials								
		Fffoo	tive Initial	free Fleetre	Field i	ntensity	Field intensity	Field intensity
	D			Thee Electro	to ov	ercome	to overcome	to overcome
Material	l Band	l elect	ron elect	electron saturated	ed ioni	zation	phonon	thermal
	gap /e	V mass	s / densi	ty / drift veloc	ity / scatt	ering /	scattering /	scattering /
		(10^{-31})	kg) cm	$^{-3}$ (10 ⁵ m •	s^{-1}) (MV	• m ⁻¹)	$(MV \cdot m^{-1})$	$(MV \cdot m^{-1})$
HfO ₂	5.7	2.91	.52 101	⁰ 2.0		30	3.2	0.01
SiO_2	7.8	4.55	550 10 ¹	^o 1. 7	:	30	3.2	0.01

激光入射到 HfO₂/SiO₂ 多层介质薄膜后,将在 每层薄膜中形成驻波,膜内光场强度随膜层厚度的 变化规律如图 2 所示,图中虚线表示膜层边界,虚线 间隔等效为每层膜的厚度。从图 2 可以看到,光场 的波腹位于低折射率膜(SiO₂)层,波节位于高折射

图 2 多层膜内的驻波场分布

率膜(HfO₂)层,光场峰值强度位于膜系的第 30 层,即 SiO₂ 层。

3.1 脉宽变化对膜系损伤状态的影响

在 10 J/cm² 激光能量密度和 10 ns 脉宽的脉冲 入射下,膜内温度的变化曲线如图 3(a)所示,其中 水平实线表示 SiO₂ 层的熔点。由于薄膜材料的吸 收系数和热扩散系数不同,所以薄膜材料的温度变 化也有所区别。当脉冲作用结束时,膜内的温度达 到 1860 ℃,最高点在膜系的第 30 层(SiO₂ 层),这 是由于薄膜光场峰值位于第 30 层,大的光场能量会 造成该膜层的温度最高,此时温度达到了薄膜材料 SiO₂ 的熔点,因此会造成薄膜的第 30 层发生热熔 融损伤。温度最高点随时间的变化曲线如图 3(b) 所示。从图 3(b)可以看到,单脉冲激光作用结束 后,膜材料的温度自 1860 ℃逐渐下降。

图 3 10 ns 脉宽的脉冲入射下膜内的温度分布。(a)薄膜中心处温度;(b)温度最高点随时间的变化曲线 Fig. 3 Temperature distribution in film under incidence of pulse with pulse width of 10 ns. (a) Temperature at center of film; (b) curve of temperature peak with time

在 10 J/cm² 激光能量密度和 10 ns 脉宽的脉冲 激光作用结束后,薄膜内热致应力的空间分布如 图 4 所示。从图 4 可以看到,径向热应力总是呈现 压应力,环向和轴向热应力分别呈现拉应力和压应 力;在一定的半径内,热应力随着薄膜厚度的增加发 生突变,这是由于 HfO₂ 和 SiO₂ 两种材料的热力学 参数存在差异。

为了进一步分析薄膜温度与应力损伤的演化过程,选取薄膜材料 HfO₂和 SiO₂ 应力最大的膜层进行分析,膜层表面的应力分布如图 5 所示。从图 5

可以看到,HfO₂ 层的最大热应力略大于 SiO₂ 层, 这是由于薄膜热应力受膜材料温升大小和材料力学 参数的共同影响,而 HfO₂ 材料有较大的热膨胀系

第 42 卷 第 1 期/2022 年 1 月/光学学报

数和杨氏模量,所以即使 HfO₂ 层内温升较 SiO₂ 层 小,但也有较大的热致应力。薄膜材料的压缩强度 阈值约为 1.5×10^9 Pa^[6],由图 5 可知薄膜的最大压 应力均未达到薄膜的应力损伤阈值。HfO₂ 膜层的 最大拉应力为环向拉应力(2.05×10^8 Pa),其未达

图 5 10 ns 脉宽的脉冲入射下膜层的最大应力场分布。(a) HfO₂ 膜层;(b) SiO₂ 膜层 Fig. 5 Maximum stress field distribution of film under incidence of pulse with pulse width of 10 ns. (a) HfO₂ film layer; (b) SiO₂ film layer

光子电离速率的变化规律与电场强度基本保持一 致,而且多光子电离速率远大于雪崩电离速率,这是 由于膜内形成的驻波越大,薄膜内部积聚的能量越 多,则多光子电离速率就会越大。

激光辐照薄膜的过程中,因光子发生电离而导 致自由电子的累积。在 10 J/cm² 激光能量密度和 10 ns 脉宽的脉冲作用下,膜内的光子速率变化曲线 如图 6 所示。从图 6 可以看到,雪崩电离速率和多

基于电子增殖理论计算得到了薄膜材料内部的 自由电子数密度,如图7所示。从图7可以看到,膜 层材料内部的自由电子数密度为10¹⁰ cm⁻³,当脉冲 结束时,薄膜内部自由电子累积的最大值在薄膜的 第30层,约为1.105×10¹⁶ cm⁻³。当材料内部的自 由电子数密度超过临界阈值(10²¹~10²² cm⁻³)时, 认为薄膜发生损伤,但未达到自由电子数密度阈值, 所以薄膜未发生场损伤,但此时热损伤已经发生。

将激光能量密度固定为 10 J/cm²,在综合考虑 热致损伤和场致损伤两种效应的情况下,不同脉宽 的脉冲激光作用下的薄膜损伤状态如表 3 所示。由 于材料的压缩强度远高于拉伸强度,材料的应力损

图 7 10 ns 脉宽的脉冲入射下膜内的自由电子密度分布曲线 Fig. 7 Free electron density distribution curve in film under incidence of pulse with pulse width of 10 ns

伤往往是环向应力,表中主要分析了 SiO₂ 层的环向

第 42 卷 第 1 期/2022 年 1 月/光学学报

应力。从表 3 可以看到,当激光能量密度为 10 J/cm² 和激光脉宽为 10 ns 时,薄膜发生了热熔 融和热致应力损伤;当脉宽增加到 20 ns 时,薄膜只 发生了热致应力损伤,薄膜损伤的过程中热应力破 坏先于热破坏;激光脉宽每增大 10 ns,膜内温度约 下降 5.4%,应力约下降 9.84%,自由电子数密度约 下降 0.8%;随着激光脉宽的增大,激光峰值功率密 度逐渐减小,膜内光场强度也逐渐减小,膜内温度、 热应力和自由电子密度大约呈线性减小。

表 3	不同脉宽作用下	「的薄膜损	伤特性
140		H 2 1 1 10 10 10 10 10 10 10 10 10 10 10 10	121217

Table 3 Film damage characteristics under different pulse widths

Demonstration			Pulse width /ns		
Parameter	10	20	30	40	50
Maximum temperature /°C	1860	1721	1616	1540	1482
Maximum hoop stress $/(10^8 \text{ Pa})$	1.42	1.22	1.02	9.90	9.20
Free electron density $/(10^{16} \text{ cm}^{-3})$	1.105	1.066	1.058	1.049	1.042
Whether it is damaged	Yes	Yes	No	No	No

3.2 能量密度变化对膜系损伤状态的影响

在 8 J/cm² 激光能量密度和 10 ns 脉宽的脉冲 入射下,膜内温度的变化曲线如图 8 所示。从图 8 可以看到,在脉冲作用下,膜内温升最大为 1489 ℃,

且最高点仍为膜系的第 30 层(SiO₂ 层),HfO₂ 层和 SiO₂ 层的温度最大值均小于材料的熔点,此时薄膜 没有发生损伤。

图 8 8 J/cm² 激光能量密度的脉冲入射下膜内的温度分布。(a)薄膜中心处温度;(b)温度最高点随时间的变化曲线 Fig. 8 Temperature distribution in film under incidence of pulse with laser energy density of 8 J/cm². (a) Temperature at center of film; (b) curve of temperature peak with time

在 8 J/cm² 激光能量密度和 10 ns 脉宽的脉冲 作用结束后,薄膜内热致应力的空间分布如图 9 所 示。从图 9 可以看到,相比于 10 J/cm² 激光能量密 度和 10 ns 脉宽的脉冲作用,薄膜的应力空间分布 除了幅值降低以外,变化趋势基本一样;径向应力仍 为压应力,在一定厚度内,随着半径的增大,环向和 轴向热应力都是先从较大的压应力迅速减少到零, 然后变成拉应力继续增大,最后趋于稳定。

图 9 8 J/cm² 激光能量密度的脉冲入射下膜内的应力场空间分布。(a)径向应力;(b)环向应力;(c)轴向应力 Fig. 9 Spatial distribution of stress field in film under incidence of pulse with laser energy density of 8 J/cm². (a) Radial stress; (b) annular stress; (c) axial stress

在 8 J/cm² 激光能量密度和 10 ns 脉宽的脉冲 入射下,应力最大的膜层的应力场分布如图 10 所

示。从图 10 可以看到,两种薄膜材料的轴向与径向 最大压应力均未超过薄膜的压缩强度,HfO₂ 层的

第 42 卷 第 1 期/2022 年 1 月/光学学报

研究论文

最大拉应力为环向拉应力(1.61×10^8 Pa),其未达 到 HfO₂ 材料的抗拉强度,SiO₂ 膜层的环向拉应力

> (a) HfO, stress /(10⁸ Pa) 0 -2 -6 -8 σ_{o} -10 2 59 1 3 4 6 7 8 10 $r/(10^{-4} \text{ m})$

最大值为 1.18×10^8 Pa,略大于 SiO₂ 材料的抗拉强 度,所以 SiO₂ 膜层仍会发生热应力损伤。

Fig. 10 Maximum stress field distribution of film under incidence of pulse with laser energy density of 8 J/cm^2 . (a) HfO₂ film layer; (b) SiO₂ film layer

在 8 J/cm² 激光能量密度和 10 ns 脉宽的脉冲入 射下,膜内的自由电子数密度分布如图 11 所示。从 图 11 可以看到,脉冲结束后自由电子数累积的最大 值在膜系的第 30 层,约为 1.095×10¹⁶ cm⁻³,未达到 自由电子数密度阈值,此刻膜层也未发生场损伤。

将激光脉宽固定为 10 ns,在综合考虑热致损伤 和场致损伤两种效应的情况下,不同能量密度的脉 冲激光作用下的薄膜损伤状态如表 4 所示。从表 4 可以看到,在8 J/cm² 激光能量密度和 10 ns 脉宽的 脉冲激光诱导下,薄膜发生热熔融和热致应力损伤, 当能量密度减小到 8 J/cm² 时,膜内只发生了热致 应力损伤;激光能量每减小 2 J/cm²,膜系温度约下 降 29.19%,应力约下降 29.05%,自由电子数密度 约下降1.51%;当激光脉宽不变时,激光能量密度 的减小会导致膜内光场强度也减小,膜内温升效应、 热致应力场和场效应都近似呈线性减弱。

Fig. 11 Free electron density distribution curve in film

under incidence of pulse with laser energy density of 8 $\mathrm{J/cm^2}$

表 4 不同能量密度下的薄膜损伤	特性
------------------	----

	Table	4 Fil	m damage	characteristics	under	different	energy	density
--	-------	-------	----------	-----------------	-------	-----------	--------	---------

Demonster	Energy density /(J • cm ⁻²)						
Farameter	10	8	6	4	2		
Maximum temperature /°C	1860	1489	1117	744	372		
Maximum hoop stress $/(10^7 \text{ Pa})$	14.10	11.50	8.78	5.80	2.93		
Free electron density $/(10^{16} \text{ cm}^{-3})$	1.105	1.095	1.082	1.062	1.042		
Whether it is damaged	Yes	Yes	No	No	No		

3.3 薄膜损伤阈值的计算

激光脉宽的改变会影响材料的损伤特性,在综 合考虑两种损伤效应的情况下,不同脉宽的激光作 用下薄膜的损伤阈值如图 12 所示。当薄膜材料的 最高温度大于相应熔点,或者最大应力高于相应应 力的阈值时,激光能量密度就会被视为热损伤阈 值^[6];当自由电子数密度突破材料临界阈值时,激光 能量密度就会被视为场损伤阈值^[16]。从图 12 可以 看到,随着激光脉宽的增大,膜系的热损伤阈值和场 损伤阈值均逐渐增大;相同脉宽的激光作用下,薄膜的场损伤阈值大于热损伤阈值,也就是说当将 1064 nm 波长的纳秒激光作用于 HfO₂/SiO₂ 多层 介质薄膜时,热损伤的发生会先于场损伤,薄膜的损 伤阈值取决于热损伤阈值,热损伤效应是导致该薄 膜发生破坏的主要原因。

4 结 论

本文提出一种全面分析薄膜材料损伤特性的分

图 12 膜系损伤阈值随脉宽的变化曲线

Fig. 12 Change curves of membrane damage threshold with pulse width

析方法,基于热传导理论、热应力方程以及电子增殖 理论综合讨论不同的输入条件对多层介质膜损伤特 性的影响。利用所提方法对多层 HfO₂/SiO₂ 光学 薄膜进行具体的计算仿真,结果表明在红外纳秒激 光诱导 HfO₂/SiO₂ 多层膜损伤破坏的过程中,热效 应的破坏先于场效应,热致应力的破坏作用先于热 熔融,薄膜的 SiO₂ 层(第 30 层)会发生熔化损伤和 应力损伤,而 HfO₂ 层未发生损伤。该方法可以推 广到不同的应用条件下不同类型的多层膜系分析 中,为高功率激光系统的运行和设计提供理论参考。

参考文献

- Apfel J H. Electric fields in multilayers at oblique incidence[J]. Applied Optics, 1976, 15(10): 2339-2343.
- [2] Nagy B J, Vámos L, Oszetzky D, et al. Femtosecond damage threshold at kHz and MHz pulse repetition rates [J]. Proceedings of SPIE, 2014, 9237: 153-158.
- [3] Csajbók V, Bedöházi Z, Nagy B J, et al. Ultrafast multipulse damage threshold of femtosecond high reflectors[J]. Applied Optics, 2018, 57(2): 340-343.
- [4] WuZL, FanZX. Measurement of bulk and interface absorption in multilayer coatings [J]. Acta Optica Sinica, 1989, 9(7): 630-634.
 吴周令,范正修. 多层介质膜的体吸收与界面吸收研 究[J]. 光学学报, 1989, 9(7): 630-634.
- [5] Du L F, Fu B, Li F Y, et al. Analysis on laserinduced transient damage behavior in multilayer coating [J]. Optics Communications, 2016, 358: 120-125.
- [6] Wang B. Research on damage characteristics and mechanisms of optical film components irradiated by

pulsed lasers with different durations[D]. Nanjing: Nanjing University of Science and Technology, 2013. 王斌. 不同脉宽激光致光学薄膜元件损伤特性和机 理分析[D]. 南京:南京理工大学, 2013.

- [7] Mansuripur M, Connell G A, Goodman J W. Laserinduced local heating of multilayers [J]. Applied Optics, 1982, 21(6): 1106-1114.
- [8] Huang F, Niu Y X, Wang Y F, et al. Calculation of thermal and mechanical effect induced by laser in optical window materials [J]. Acta Optica Sinica, 2006, 26(4): 576-580.
 黄峰,牛燕雄,汪岳峰,等.光学窗口材料激光辐照 热-力效应的解析计算研究[J].光学学报, 2006, 26 (4): 576-580.
- [9] Niemz M H. Threshold dependence of laser-induced optical breakdown on pulse duration [J]. Applied Physics Letters, 1995, 66(10): 1181-1183.
- [10] Thornber K K. Applications of scaling to problems in high-field electronic transport[J]. Journal of Applied Physics, 1981, 52(1): 279-290.
- [11] Vaidyanathan A, Walker T, Guenther A. The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics[J]. IEEE Journal of Quantum Electronics, 1980, 16(1): 89-93.
- [12] Wakaki M. Physical properties and data of optical material [M]. Zhou H X, Cheng Y F, Transl. Beijing: Chemical Industry Press, 2010.
 [日]若木守明. 光学材料手册 [M]. 周海宪, 程云 芳, 译. 北京: 化学工业出版社, 2010.
- Kennedy P K. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory [J]. IEEE Journal of Quantum Electronics, 1995, 31(12): 2241-2249.
- [14] Ma G B, Tan W H, Wang Z S. Calculation of threshold dependence of laser- induced damage upon pulse duration[J]. Optics and Precision Engineering, 1998, 6(3): 23-28.
 马国彬,谭维翰,王占山.激光辐射损伤阈值与激光 脉宽相互关系的模拟计算[J].光学精密工程, 1998, 6(3): 23-28.
- [15] Shen Y M, He H B, Shao S Y, et al. Influences of the film thickness on residual stress of the HfO₂ thin films [J]. Rare Metal Materials and Engineering, 2007, 36(3): 412-415.
 申雁鸣,贺洪波,邵淑英,等. 薄膜厚度对 HfO₂ 薄膜残余应力的影响[J]. 稀有金属材料与工程, 2007, 36(3): 412-415.
- [16] Shang X C, Zhang R Z, Ma P. Analysis of avalanche mechanisms in short-pulses laser-induced damage[J]. Optics & Laser Technology, 2010, 42(1): 243-246.

第42卷第1期/2022年1月/光学学报